Abstract
The utilization of industrial and agricultural waste produced by industrial process has been the focus on waste reduction research for economical, environmental and technical reasons. SCBA is a fibrous waste product of the sugar refining industry, along with ethanol vapour. Bagasse ash mainly contains aluminium ion and silica. The use of SCBA as a pozzolonic material for producing high strength concrete. OPC is partially replaced with finely SCBA. At present the disposal of waste tyre is becoming a major waste management problem in the world. In this project, the bagasse ash has been chemically and physically characterized and partially replaced in the ratio of 0%, 5%, 15% and 25% by weight of cement in concrete. The mix proportion for M30 grade concrete was derived. Rubber tyre waste has been used as coarse aggregate with replacement of conventional coarse aggregate and it is taken as constant of 10%.
The utilization of industrial and agricultural waste produced by industrial process has been the focus on waste reduction research for economical, environmental and technical reasons. SCBA is a fibrous waste product of the sugar refining industry, along with ethanol vapour. Bagasse ash mainly contains aluminium ion and silica. The use of SCBA as a pozzolonic material for producing high strength concrete. OPC is partially replaced with finely SCBA. At present the disposal of waste tyre is becoming a major waste management problem in the world. In this project, the bagasse ash has been chemically and physically characterized and partially replaced in the ratio of 0%, 5%, 15% and 25% by weight of cement in concrete. The mix proportion for M30 grade concrete was derived. Rubber tyre waste has been used as coarse aggregate with replacement of conventional coarse aggregate and it is taken as constant of 10%.
INTRODUCTION
Ordinary Portland cement is the most extensively used construction material in the world. Portland cement is the conventional building material that actually is responsible for about 5%-8% of global CO2 emissions. This environmental problem will most likely be increased due to exponential demand of Portland cement. Today we are focusing on ways of utilizing either industrial or agricultural waste, as a source of raw materials for industry. This waste, utilization would not only be economical, but may also result in foreign exchange earnings and environmental pollution control. Several researchers and even the Portland cement industry are investigating alternatives to produce green building materials. Industrial wastes, such as blast furnace slag, fly ash and silica fume are being used as supplementary cement replacement materials. Agro wastes such as rice husk ash, wheat straw ash, hazel nutshell and sugarcane bagasse ash are used as pozzolanic materials for the development of concrete. Currently, there has been an attempt to utilize the large amount of bagasse ash, the residue from an in-line sugar industry and the bagasse-biomass fuel in electric generation industry. When this waste is burned under controlled conditions, it also gives ash having amorphous silica, which has pozzolanic properties. Solid waste is concerned with waste tyres, has become a problem of interest because of its non-biodegradable nature. Tyre rubber wastes represent a major environmental problem of increasing significance. Most of the waste tyre rubbers are used as a fuel in many of the industries such as thermal power plant, cement kilns and brick kilns etc. this material can also be used for non load-bearing purposes such as noise reduction barriers. Investigations about rubber waste concrete show that concrete performance is very dependent on the waste aggregates. Further investigations are needed to clarify for instance which are the characteristics that maximize concrete performance.
Ordinary Portland cement is the most extensively used construction material in the world. Portland cement is the conventional building material that actually is responsible for about 5%-8% of global CO2 emissions. This environmental problem will most likely be increased due to exponential demand of Portland cement. Today we are focusing on ways of utilizing either industrial or agricultural waste, as a source of raw materials for industry. This waste, utilization would not only be economical, but may also result in foreign exchange earnings and environmental pollution control. Several researchers and even the Portland cement industry are investigating alternatives to produce green building materials. Industrial wastes, such as blast furnace slag, fly ash and silica fume are being used as supplementary cement replacement materials. Agro wastes such as rice husk ash, wheat straw ash, hazel nutshell and sugarcane bagasse ash are used as pozzolanic materials for the development of concrete. Currently, there has been an attempt to utilize the large amount of bagasse ash, the residue from an in-line sugar industry and the bagasse-biomass fuel in electric generation industry. When this waste is burned under controlled conditions, it also gives ash having amorphous silica, which has pozzolanic properties. Solid waste is concerned with waste tyres, has become a problem of interest because of its non-biodegradable nature. Tyre rubber wastes represent a major environmental problem of increasing significance. Most of the waste tyre rubbers are used as a fuel in many of the industries such as thermal power plant, cement kilns and brick kilns etc. this material can also be used for non load-bearing purposes such as noise reduction barriers. Investigations about rubber waste concrete show that concrete performance is very dependent on the waste aggregates. Further investigations are needed to clarify for instance which are the characteristics that maximize concrete performance.